

FEMA Region V Great Lakes Coastal Flood Study

Pilot Study Webinar

Berrien County, Michigan

February 26, 2014

Great Lakes

Pilot Study Webinar Agenda

2

- Great Lakes Coastal Flood Study Background
- Demonstration Project Background
 - Study objective
 - Project site determination and background

Modeling Approach

- Regional study approach
- Local modeling activities

Results and Conclusions

- Study results and recommendations
- Revised approach
- Next steps

Great Lakes Coastal Flood Study

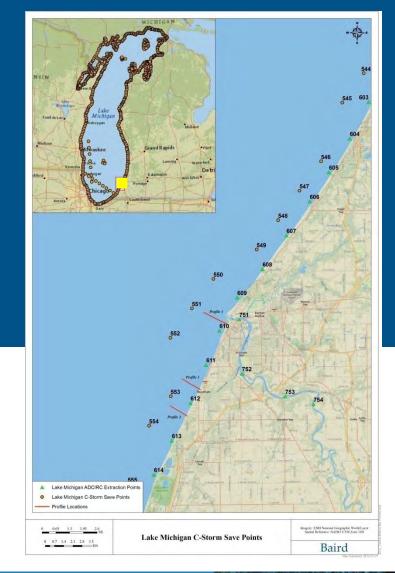
Background

Great Lakes

Lake Michigan Upcoming Work

- Technical Workshop: June 7, 2012
- Discovery Kick-off: June 21, 2012
- Discovery Report: February 2013
- Demo Project: January 2014
- Workmap Meeting: April-May, 2014
- Preliminary Maps: September 2014

4



5

Pilot Study

Berrien County

Great Lakes Coastal Flood Study Contraction of the second seco

Study Objective

6

- Evaluate the revised guidelines for coastal flooding analyses and mapping in the Great Lakes (Appendix D.3 of the G&S) for the following:
 - Tools to simulation storm-induced erosion
 - Account for long-term variability in lake levels
 - Assess new methodologies to calculate wave runup
 - Compare the new Response vs. old Event Based Methodology

Great Lakes Coastal Flood Study

Revised Guidelines

- Response-based vs. Event-based Methodology
 - Model 150 of the most severe historical storms (Response) rather than a single 'representative' storm (Event)
 - Statistical analysis of storm flooding for 150 historical events to generate the BFEs

Storm-induced Erosion

- Utilize advanced numerical models for profile evolution vs. 'rule of thumb' eroded profiles (old approach)
- Consider beach erosion for each individual event and how it affects wave transformation/runup

7

Revised Guidelines

Lake Level Variation

- Incorporate long-term lake level variation by simulating historical storm events at their actual lake level
- Storm suite (150) encompasses events during both high and low lake levels

Wave Runup

- Empirical equations (Mase/Melby, van der Meer, EurOtop)
- Empirical-based models (ACES, Runup 2.0)
- Numerical surf zone dynamics models (CSHORE)

Project Site Determination

- Exposure to coastal flood risk
- Availability of data (modern and historical)
- Ability to test D.3 guidance on different shore types found throughout Great Lakes
- Status of on-going flood studies

Berrien County Background

- Vulnerable to Coastal Flooding
- Data Rich County

10

- Multiple Shoreline Types
 - Sandy beaches and dunes
 - Eroding bluffs
 - Fillet beaches adjacent to a jettied harbor
 - Institutional and private shoreline protection structures

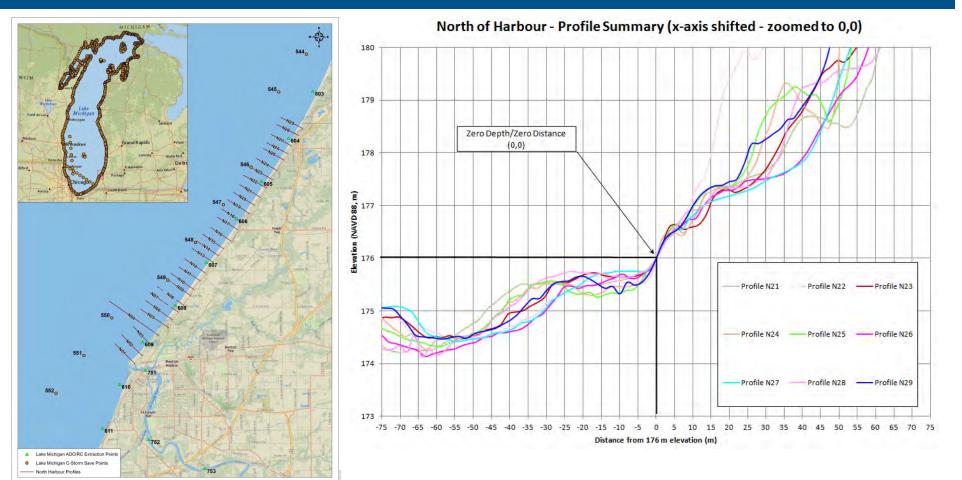
FEMA

Project Site (Berrien County)

- Assembled historical beach and nearshore profiles
- 150 storm events from Engineering Research Development Center (ERDC): ADCIRC and WAM modeling (1960-2009)
- County divided into 10 shoreline reaches to define transect locations
- Testing and demonstration of various wave runup methodologies using historical bathymetry and LIDAR
- Comparison of CSHORE numerical model results to empirical wave runup formulations

11

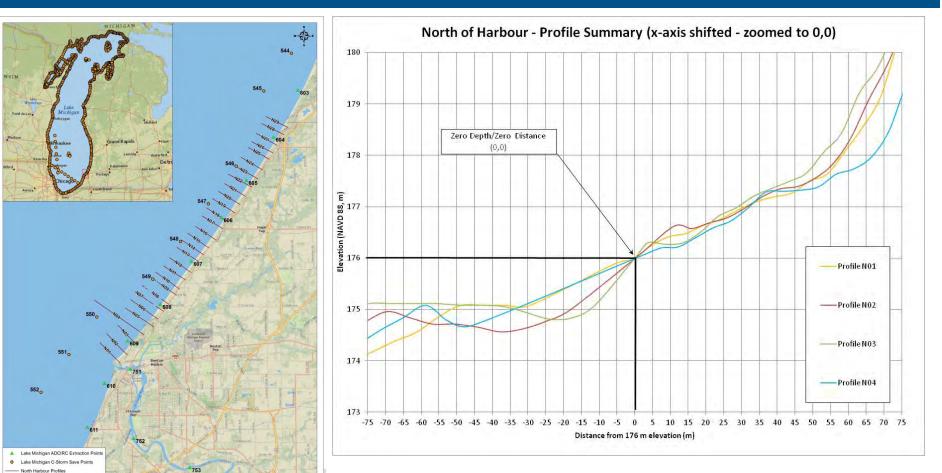
Historical Beach Conditions


RiskMAP Increasing Resilience Together

12

Great Lakes

Beach Profile Data



RiskMAP Increasing Resilience Together Great Lakes Coastal Flood Study

Beach Profile Data

RiskMAP Increasing Resilience Together Great Lakes

Great Lakes Coastal Flood Study

Modeling Approach

Great Lakes

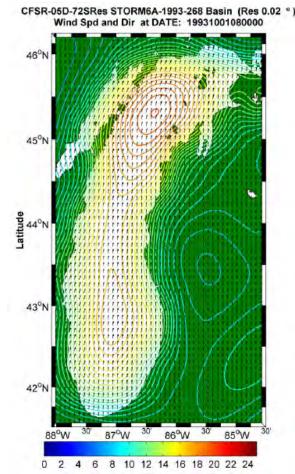
Study Approach

Lakewide Wave/Surge Study

- Model for entire lake (including Huron)
- Calibrated against measured data
- Improvement over county by county assessment

Local/County Level Activities

- Mapping level tasks performed at county level
- Nearshore wave transformations with CSHORE
- Wave runup calculations



Lake-Wide Modeling Results

- 150 storm events from ERDC ADCIRC and WAM modeling (1960-2009)
- Water levels and wave parameters at hundreds of output points along the lake shore
- Wind, ice cover, long-term lake level considered

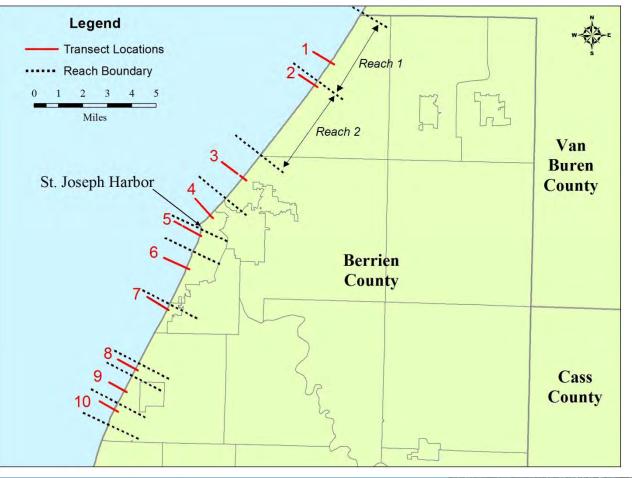
Great Lakes Coastal Flood Study

greatlakescoast.org

Constant of the second second

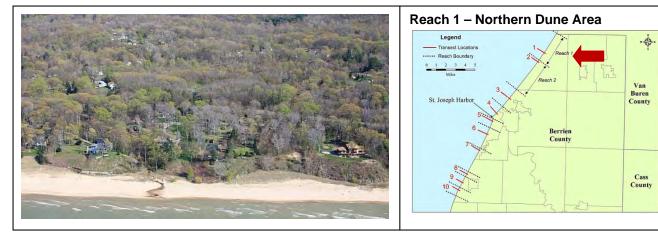
Surf Zone Modeling Approach

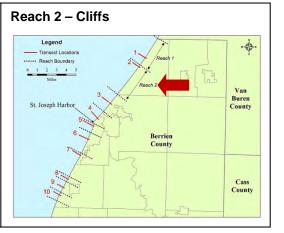
- Demonstration project allowed modeling approaches to be developed for:
 - Erosion
 - Wave Propagation
 - Wave Runup
- Followed revised guidance in Appendix D.3
- Modeling approaches investigated:
 - 1-D Models, including CSHORE
 - Historic beach profiles versus modern data



Transect Spacing

 Geomorphic Reaches Define Transect Spacing


Great Lakes



Reach Examples

Reach 1 and 2

Great Lakes Coastal Flood Study

Coastal Erosion

- Episodic, flood-related erosion due to coastal storms
- Does not consider long-term erosion hazard areas
- Evaluated prior to wave runup calculations

EMA

Wave Runup

22

- Uprush of water from wave action on beach
- NFIP definition of wave runup elevation is the value exceed by a 2% probability of exceedance – R_{2%}
- Methodologies reviewed in Melby (2012)

Great Lakes Coastal Flood Study

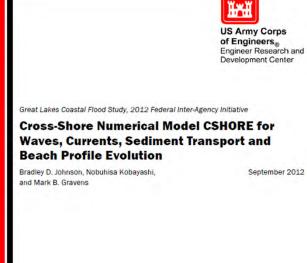
CSHORE

23

- Developed by United States Army Corps of Engineers ERDC
- 1D model of wave runup and profile morphology (Johnson et al., 2011)
- Utilizes time-series of waves and water levels from ADCIRC and WAM modeling effort
- Key physical processes accounted for in model
- Tested, calibrated, and verified using physical model results

Great Lakes Coastal Flood Study

Results and Conclusions



Study Progression

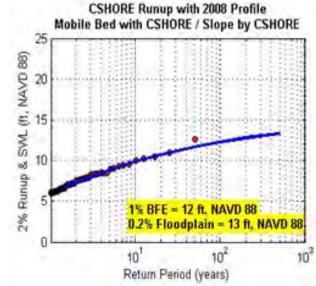
- Initial CSHORE code provided by ERDC (late 2012)
- Applied model to develop wave runup results (Jan 2013)
- Provided results to ERDC for consideration (Feb 2013)
- ERDC provided revised model code (March 2013)
- Transects reanalyzed using revised code (Jan 2014)

greatlakescoast.org

approved for public release: distribution is unlimited

ERDC/CHL TR-12-22

Coastal and Hydraulics Laboratory



Revised Approach

- Based on the results of the Demonstration Studies, ERDC recommendations and the guidance in Appendix D.3:
 - CSHORE will be used to determine coastal erosion for storms (beach sites)
 - CSHORE will be used to develop coastal BFEs and mapping extents for areas susceptible to wave runup

greatlakescoast.org

Great Lakes Coastal Flood Study

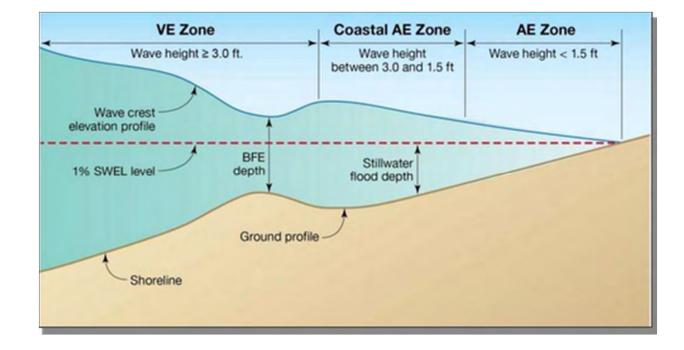
Coastal Flood Hazard Zones

FEMA developed a memorandum regarding the mapping of VE Zones along the Great Lakes (September 30, 2013):

VE Zones

27

- Currently mapped based on wave height / runup depth (Hs > 3 ft)
- This procedure was developed for the Atlantic, Pacific, and Gulf Coasts
- FEMA recognizes it may not be appropriate for Great Lakes
- An independent study will be performed to determine the appropriateness of mapping VE Zones in Great Lakes
- In the interim:
 - VE Zones will be identified on work maps
 - VE Zones will not be mapped on regulatory products



VE Zones and LiMWA

FEMA Procedure Memorandum No. 50, 2008 (LiMWA)

- No Federal Insurance requirements tied to LiMWA
- Non-regulatory

28

Who to Contact

- FEMA Region V
 - Ken Hinterlong @ ken.hinterlong@fema.dhs.gov
- State Partner
 - Linda Burke @ burkel4@michigan.gov
- ASFPM

29

- Alan Lulloff @ alan@floods.org
- STARR
 - Brian Caufield (technical) @ caufieldba@cdmsmith.com
 - Patrick Covil (outreach) @ Patrick.covil@stantec.com
 - info@greatlakescoast.org

