FEMA Region V
Great Lakes Coastal Flood Study
Brown County Pilot Study

Neville Public Museum
Green Bay, Wisconsin

February 27, 2014
Brown County Pilot Study Agenda

- Great Lakes Coastal Flood Study Background
- Pilot Study Background
 - Study objective
 - Project site determination and background
- Modeling Approach
 - Regional study approach
 - Local modeling activities
- Results and Conclusions
 - Pilot study outcomes
 - Developed model approach
 - Mapping considerations
Great Lakes
Coastal Flood Study

Background
Brown County Schedule

- Technical Workshop: May 10, 2012
- Discovery Kick-off: June 15, 2012
- Discovery Report: February 2013
- Demonstration Project: November 2012 – February 2014
- Bathymetry Data Collection: February 2014
- Workmap Meetings: April 2015
- Preliminary Maps: September 2015
Pilot Study
Brown County, WI
Study Objective

- Evaluate the revised guidelines for coastal flooding analyses and mapping in the Great Lakes (Appendix D.3 of the G&S) for the following:
 - Response-based vs. event-based approach
 - Storm-induced erosion
 - Lake level variation
 - Wave runup

- Test CSHORE model

- Develop methodologies to produce wave propagation and wave runup results for future coastal PMRs
Revised Guidelines

- **Response-based vs. event-based approach**
 - Model large suite of individual historical storms rather than a single ‘representative’ event
 - Use statistical analysis of storm suite results to generate BFVs

- **Storm-induced erosion**
 - Utilize advanced numerical models for profile evolution vs. ‘rule of thumb’ eroded profiles
 - Consider erosion for each individual event and how it affects wave transformation/runup
Revised Guidelines

- **Lake level variation**
 - Incorporate long-term varying lake levels specific to each storm event
 - Storm suite encompasses events during both high and low lake levels

- **Wave runup**
 - Numerical surf zone dynamics models
 - Other FEMA-approved methods
Project Site Determination

- Appropriateness of site for pilot study
- Availability of data
- Status of on-going flood studies
- Ability to test D.3 guidance on shoreline features that will be found throughout Great Lakes (for future flood studies)
- Variability in storm surge / wave exposures
Brown County, WI

- Coastal hazard analysis recently completed in 2009
- Allows for comparison of CSHORE numerical model results to effective BFEs and empirical equations
- Different shoreline types to develop and test erosion, wave propagation and wave runup methodologies
- Shallow and sheltered waters that present unique wave actions
- 150 storm events from ERDC ADCIRC and STWAVE modeling (1960-2009)
Site Background

- **Multiple shoreline types**
 - Low-lying areas
 - Steep beaches / bluffs
 - Revetments and seawalls
 - Commercial, residential, and open land uses
 - Urban and rural areas
- **Multiple exposures to surge and wave action**
- **Impacted by winds in all directions**
Great Lakes Coastal Flood Study

Modeling Approach
Study Approach

- **Regional Study Approach**
 - Water level and wave analysis
 - Improvement over community-county
 - Reduces number of boundary conditions
 - Greater consistency in assumptions

- **Local/County Level Activities**
 - Mapping level tasks performed at county level
 - Nearshore wave transformations
 - Wave runup
 - Overland wave propagation
Lake-Wide Modeling Results

• 150 storm events from ERDC ADCIRC and STWAVE modeling (1960-2009)
• Water levels and wave parameters at hundreds of output points along the lake shore
• Wind, ice cover, long-term lake level accounted for
Surf Zone Modeling Approach

- Demonstration project allowed modeling approaches to be developed for:
 - Erosion
 - Wave Propagation
 - Wave Runup

- Followed revised guidance in Appendix D.3

- Modeling approaches investigated:
 - 1-D Models, including CSHORE
 - WHAFIS
 - Other approved methods
Coastal Erosion

- Episodic, flood-related erosion due to coastal storm events
- Does not consider long-term erosion hazard areas
- Evaluated prior to wave runup and overland wave propagation
Overland Wave Propagation

- WHAFIS
 - Based on 1977 NAS report
 - Version 4.0
- Simulates wave interactions with landforms
 - Elevation
 - Obstructions
- Develops wave envelope; compares to ground elevations to determine BFE and zone extents
Wave Runup

- Uprush of water from wave action on beach or shore barrier
- National Flood Insurance Program (NFIP) definition of wave runup elevation is the value exceed by 2-percent probability of exceedance – $R_{2\%}$
- Methodologies reviewed in Melby (2012)
Developed by U.S. Army Corps of Engineers’ Engineer Research and Development Center (ERDC)

Dynamic one-dimensional model of wave runup and profile morphology (Johnson et al., 2011)

Utilizes time-series of waves and water levels from ADCIRC and STWAVE modeling effort

Physical processes accounted for within model:
- Wave-current interaction
- Sediment transport (suspended and bedload)
- Porous flow and energy dissipation
- Irregular wave runup and overtopping

Tested, calibrated, and verified using small-scale physical modeling
Great Lakes Coastal Flood Study

Results and Conclusions
Wave Propagation

- Considered transects susceptible to wave propagation
- Eroded applicable transects
- Example: BR-06
Wave Propagation

- Developed hybrid response-based / event-based approach
- Compared setup values developed from CSHORE and from empirical equations; used as inputs to WHAFIS
Wave Runup

- Response-based approach
- Eroded applicable transects
- Compared runup values developed from CSHORE and from empirical equations
- Example BR-23
- Initial CSHORE code provided by ERDC (late 2012)
- Applied model to develop wave runup results (Jan 2013)
- Provided results to ERDC for consideration (Feb 2013)
- ERDC provided revised model code and updated guidance (March 2013)
- Transects reanalyzed using revised code (Jan 2014)
CSHORE Model Revisions

Based on the results of the pilot study, CSHORE code and inputs were modified as follow:

- Model code was revised in how runup calculations were performed on transects that have a dramatic break in slope near the stillwater elevation
- Runup wire height input parameter changed
- Model run simulations were reduced from six days to one day
Wave Runup

- Comparison of initial CSHORE runs to revised CSHORE runs

![Wave Runup Graph](image)

TWL (feet above low water datum)

Transect

- CSHORE 2012
- CSHORE 2013
Developed Model Approach

- Based on the results of the pilot study, ERDC recommendations, and the guidance in Appendix D.3:
 - CSHORE will be used to determine coastal erosion
 - CSHORE will be used to determine wave heights, water levels, and wave setup values to be used as inputs to WHAFIS
 - WHAFIS will be used to determine coastal BFES and mapping extents based on wave propagation
 - CSHORE will be used to develop coastal BFES and mapping extents based on wave runup
Mapping Considerations

- VE Zones
- LiMWA
Coastal Flood Hazard Zones

FEMA developed a memorandum regarding the mapping of VE Zones along the Great Lakes (September 30, 2013):

- **VE Zones**
 - Currently mapped based on wave height / runup depth
 - This procedure was developed for the Atlantic, Pacific, and Gulf Coasts
 - FEMA recognizes it may not be appropriate for Great Lakes

- **An independent study will be performed to determine the appropriateness of mapping VE Zones in Great Lakes**

- **In the interim:**
 - VE Zones will be identified on work maps
 - VE Zones will not be mapped on regulatory products
 - LiMWA will be identified on both work maps and regulatory products
Limit of Moderate Wave Action (LiMWA)

FEMA Procedure Memorandum No. 50, 2008

- Not a regulatory requirement
- No Federal Insurance requirements tied to LiMWA

FEMA

Risk MAP
Increasing Resilience Together

Great Lakes Coastal Flood Study
greatlakescoast.org
Who to Contact

- FEMA Region V
 - Ken Hinterlong: ken.hinterlong@fema.dhs.gov
- State NFIP Coordinator
 - Gary Heinrichs: gary.heinrichs@wisconsin.gov
- ASFPM
 - Alan Luloff: alan@floods.org
- STARR
 - Brian Caufield: caufieldba@cdmsmith.com (technical)
 - Jaspreet Randhawa: randhawajg@cdmsmith.com (outreach)
- Online
 - info@greatlakescoast.org